Abstract
Computation is intertwined with essentially all aspects of physics research and is invaluable for physicists’ careers. Despite its disciplinary importance, integration of computation into physics education remains a challenge and, moreover, has tended to be constructed narrowly as a route to solving physics problems. Here, we broaden Physics Education Research’s conception of computation by constructing a metamodel—a model of modeling—incorporating insights on computational modeling from the philosophy of science and prior work. The metamodel is formulated in terms of practices, things physicists do, and how these inform one another. We operationalize this metamodel in an educational environment that incorporates making, the creation of shared physical and digital artifacts, intended to promote students’ agency, creativity, and self-expression alongside doing physics. We present a content analysis of student work from initial implementations of this approach to illustrate the very complex epistemic maneuvers students make as they engaged in computational modeling. We demonstrate how our metamodel can be used to understand student practices and conclude with implications of the metamodel for instruction and future research.Received 8 March 2022Accepted 31 January 2023DOI:https://doi.org/10.1103/PhysRevPhysEducRes.19.010121Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasEpistemology, attitudes, & beliefsInstructional strategiesLearning environmentScientific reasoning & problem solvingTechnologyProfessional TopicsUpper undergraduate studentsPhysics Education Research
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.