Abstract

A zero-knowledge proof protocol is a cryptographic protocol in which a prover, who knows the witness to a statement, can convince a verifier that the statement is true without revealing any information about the witness. Although zero-knowledge proof protocols are typically executed on electronic computers, there is a line of research to design zero-knowledge proof protocols based on physical objects (e.g., a deck of cards). This is called physical zero-knowledge proof. In this paper, we construct a physical zero-knowledge proof protocol for a logical puzzle called Sukoro. Sukoro has many cells on the puzzle board, like Sudoku, where each cell must be empty or filled with a number from one to four, and each number must match the number of adjacent filled cells, and the same numbers must not be adjacent to each other. In addition, it has a rule that all filled cells must be connected, which is called the connectivity condition. Although some existing protocols deal with the connectivity condition, all existing methods are interactive, which requires the prover’s knowledge to determine how the cards are manipulated during the execution of the protocols. In this paper, we give a new method for verifying the connectivity condition in the non-interactive setting, which means that the protocol can be executed without the prover’s knowledge, and construct a physical zero-knowledge proof protocol for Sukoro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.