Abstract
Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon neutralization through a multi-agent model simulating the electricity market and introduced a factory agent using various procurement methods including PV, FC, storage batteries (SB), and DR. Firstly, we created a new procurement strategy utilizing all methods. Then, by using the simulation model, we assessed the effectiveness of the existing peak shift DR scenarios in terms of cost reduction efficiency. Results revealed that the introduction of PV has led to a counterproductive outcome for DR. Based on the results, we proposed two methods to improve the effectiveness of DR, namely considering the operation of PV in the DR scenario and expanding the range of optional time periods for DR activation. Finally, we made three new DR scenarios based on our proposal. Through experiment, the new scenarios were confirmed to be effective in cost-effectiveness for decarbonization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.