Abstract

This work reports the first investigation on the physical vapor deposition of thin films of tin sulfide doped lead sulfide (SnS:PbS). In-situ synthesis route using diethyldithiocarbamate (DTC) ligand was adopted for SnS-DTC, PbS-DTC and SnS:PbS-DTC complex formation. PbS-DTC and SnS:PbS-DTC expressed an average crystallite size of 30.98 and 29.74 nm, respectively shown by X-ray diffraction (XRD) analysis. A face centered cubic geometry was revealed from XRD. Ultraviolet visible spectrophotometry expressed a direct and indirect band gap of 3.4 and 3.2 eV, respectively for SnS:PbS-DTC. A smooth morphology with presence of larger agglomerated particles was disclosed by scanning electron microscopy for SnS:PbS-DTC thin films with 615 nm thickness. SnS:PbS-DTC thin films expressed remarkable electrochemical behavior explored via cyclic voltammetry, linear sweep voltammetry and chronoamperometry showing an improvement in the photo-current response upon potential bias increment. The results of the current research indicated the potential of SnS:PbS-DTC thin films for utilization in different types of photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call