Abstract

Chalcogenide glasses have broad applications in the mid-infrared optoelectronics field and as phase-change materials (PCMs) due to their unique properties. Chalcogenide glasses can have crystalline and amorphous phases, making them suitable as PCMs for reversible optical or electrical recording. This study provides an in-depth analysis of the evaporation kinetics of indium-doped chalcogenides, GeTe4 and GeTe5, using the physical vapor deposition technique on glass substrates. Our approach involved a detailed examination of the evaporation process under controlled temperature conditions, allowing precise measurement of rate changes and energy dynamics. This study revealed a significant and exponential increase in the evaporation rate of GeTe4 and GeTe5 with the introduction of indium, which was particularly noticeable at higher temperatures. This increase in evaporation rate with indium doping suggests a more complex interplay of materials at the molecular level than previously understood. Furthermore, our findings indicate that the addition of indium affects the evaporation rate and elevates the energy requirements for the evaporation process, providing new insights into the thermal dynamics of these materials. This study’s outcomes contribute significantly to understanding deposition processes, paving the way for optimized manufacturing techniques that could lead to more efficient and higher-performing optoelectronic devices and memory storage solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.