Abstract

Horizontal wells’ multi-section and multi-cluster hydraulic fracturing plays an important role in the efficient development of shale gas. However, the influence of the perforating hole and natural fracture dip angle on the process of hydraulic fracture initiation and propagation has been ignored in the current researches. This paper presents the results related to a tri-axial large-scale hydraulic fracturing experiment under different natural fracture parameters. We discuss the experimental results relating to the near-wellbore tortuosity propagation of hydraulic fractures. Experimental results showed that the triaxial principal stress of the experimental sample was deflected by the natural fracture, which caused significant near-wellbore tortuosity propagation of the hydraulic fractures. The fractures in most rock samples were not perpendicular to the minimum horizontal principal stress after the experiment. As well, the deflection degree of triaxial principal stress direction and the probability of hydraulic fractures near-wellbore tortuosity propagation decreased with the increase of the natural fracture dip angle. After hydraulic fractures’ tortuous propagation, the hydraulic fractures will propagate in the direction controlled by the triaxial stress in the far-wellbore area. For reservoirs with natural fractures, proppant in hydraulic fracturing should be added after the fractures are fully expanded to prevent sand plugging in tortuous fractures. When the permeability of natural fractures is low, the volume of fracturing fluid entering natural fractures is small, and hydraulic fractures are easy to pass through the natural fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call