Abstract

Multi-cluster fracturing in horizontal wells is a key technology for successful development of ultra-low permeability reservoir. The propagation of hydraulic fracture during multi-cluster fracturing is complicated, especially in shale reservoir with multiple natural fractures. The design and operation of multi-cluster fracturing requires adequate understanding of influence of different factors on hydraulic fracture propagation. Up to now, many scholars have studied the hydraulic fracture morphology in multi-cluster fracturing, but few have analyzed the effect of natural fractures on hydraulic fracture propagation during multi-cluster fracturing. In this paper, a new computationally version of the particle-based model is established by Xsite to study the fracture propagation in multi-cluster fracturing with natural fractures. The tensile strength and rock toughness are calculated, and tri-axial experiments are performed to verify the accuracy of model. Simulation results show that cluster spacing and in-situ stress difference have a significant influence on the length of the hydraulic fracture and the morphology of fracture. The length of middle fracture increases with the increase of the cluster spacing, but decreases with the increase of the in-situ stress difference during multi-cluster fracturing with three natural fractures. The enhancing of cluster spacing can reduce the deflection of left and right fractures, and the increase of the in-situ stress difference can improve the ability of middle fracturing penetrating the natural fracture. Three fracturing sequence of synchronous fracturing, two-step fracturing and sequential fracturing is simulated. The left and right fractures can always penetrate the natural fracture with different fracturing sequence. But the middle fracture shows different morphology of arresting by natural fracture (during synchronous fracturing), partially penetrating the natural fracture (during two-step fracturing) and directly penetrating the natural fracture (during sequential fracturing). Different cement strengths of natural fracture are analyzed. The increase of strength of natural fracture can enhance the ability of hydraulic fracture penetrating the natural fracture. Hydraulic fracture is arrested by weak natural fracture (shear strength of 0.5 MPa), resulting in natural fracture opening. As hydraulic fracture intersecting with strong natural fracture (shear strength of 20 MPa), the hydraulic fracture can penetrate the natural fracture directly without natural fracture opening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call