Abstract
BackgroundMost animals and plants have more than one set of chromosomes and package these haplotypes into a single nucleus within each cell. In contrast, many fungal species carry multiple haploid nuclei per cell. Rust fungi are such species with two nuclei (karyons) that contain a full set of haploid chromosomes each. The physical separation of haplotypes in dikaryons means that, unlike in diploids, Hi-C chromatin contacts between haplotypes are false-positive signals.ResultsWe generate the first chromosome-scale, fully-phased assembly for the dikaryotic leaf rust fungus Puccinia triticina and compare Nanopore MinION and PacBio HiFi sequence-based assemblies. We show that false-positive Hi-C contacts between haplotypes are predominantly caused by phase switches rather than by collapsed regions or Hi-C read mis-mappings. We introduce a method for phasing of dikaryotic genomes into the two haplotypes using Hi-C contact graphs, including a phase switch correction step. In the HiFi assembly, relatively few phase switches occur, and these are predominantly located at haplotig boundaries and can be readily corrected. In contrast, phase switches are widespread throughout the Nanopore assembly. We show that haploid genome read coverage of 30–40 times using HiFi sequencing is required for phasing of the leaf rust genome, with 0.7% heterozygosity, and that HiFi sequencing resolves genomic regions with low heterozygosity that are otherwise collapsed in the Nanopore assembly.ConclusionsThis first Hi-C based phasing pipeline for dikaryons and comparison of long-read sequencing technologies will inform future genome assembly and haplotype phasing projects in other non-haploid organisms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have