Abstract

Abstract Dust storms are a persistent feature of the tropical North Atlantic and vary over a wide range of temporal scales. While it is well known that mineral aerosols alter the local radiative fluxes, far less is understood about the oceanic response to such forced changes to the radiative budget, particularly on long time scales. This study uses an observation-based climatology of dust surface forcing and an ocean general circulation model to examine the influence of anomalous atmospheric dust cover over the tropical North Atlantic on upper ocean temperature and circulation during 1955–2008. It is found that surface temperature anomalies from the model experiments are forced primarily by local radiation-induced changes to the surface heat budget. The subsurface temperature anomalies are additionally influenced by upper ocean circulation anomalies, which are the response to dust-forced steric changes in dynamic height. The results herein suggest that on decadal time scales dust-forced variability of ocean surface and subsurface temperatures are of a magnitude comparable to observed variability. On longer time scales dust-forced sea surface temperature anomalies vary in phase with the Atlantic multidecadal oscillation, implying that tropical North Atlantic multidecadal variability is related to changes in dust emissions from West Africa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call