Abstract

Meteorites, generally 1 cm or larger in size that are believed to sample asteroids, and interplanetary dust particles (IDPs), generally 5–50 μm in size that are believed to sample both asteroids and comets, span the size range of the meteors. Thus, the physical properties of the meteorites and the IDPs are likely to constrain the properties of the meteors and their parent bodies. Measurements of the density, porosity, longitudinal and transverse speeds of sound, elastic modulus, and bulk modulus, as well as imaging of the internal structure by Computed Microtomography indicate that unweathered samples of chondritic meteorites are more porous and have lower sound velocities than compact terrestrial rocks. In general, the IDPs are even more porous than the chondritic meteorites. The impact energy per unit target mass required to produce a barely catastrophic disruption (Q*D) for anhydrous ordinary chondrite meteorites is twice that for terrestrial basalt or glass, indicating that collisional disruption of anhydrous meteorites requires more energy than for a compact basalt. These results indicate that most stone meteors are likely to be weak, porous objects, and that the parent bodies of the anhydrous stone meteorites are likely to be more difficult to disrupt than compact terrestrial basalt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call