Abstract

The energy properties and the differential cross-sections of laser-electron-Compton scattering are quantitatively investigated. The calculations show simple structures of the scattered photon energy and the angular distribution of the differential cross-section. At high incident electron energy, Compton scattering X-ray source has features of easily tunable photon energy and small forward emission angle. Although the dispersion of Compton scattering X-ray source is large, narrow bandwidth X-ray emission can be obtained experimentally by using specific monochromatic filter. The total cross-section and the cross-section within the forward emission angle (γ, where γ= E/m0c2 is the total electron energy (E) in the unit of its static energy (m0c2)) change slightly for different laser wave lengths and different incident electron energies in a broad range from 1 MeV to 10 GeV. They have values of 0067 mb and 0033 mb, respectively. The total cross-section of the visible lights is very small. These results may be useful for building new generation ultra-short X-ray source based on Compton scattering technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.