Abstract

In this study, we used the ab-initio computational tools as implemented in the CASTEP code to explore the effects of pressure on the structural, elastic, electronic, thermodynamic and optical properties of the fluoroperovskite compounds XBeF3 (X = K, Rb) based on Being. Exchange–correlation interactions were modeled using the GGA-PBEsol functional. The ground state of the title materials was characterized by calculating the optimized lattice parameter, the bulk modulus B and its pressure derivative, and the Goldsmith tolerance factor. These materials exhibit structural stability in the cubic structure even when subjected to significant pressure levels, extending up to 18 GPa. The analysis of numerical assessments of single-crystal elastic constants (Cij ), polycrystalline elastic moduli, namely shear modulus (G), Young’s modulus and Poisson’s ratio, as well as the anisotropy factor (A), highlights the mechanical stability, elastic anisotropy and ductility of considered the compounds. The thermodynamic properties of these materials were studied through the Debye quasi-harmonic model. Analysis of energy band structures and density of states spectra shows that XBeF3 (X = K, Rb) is insulating in nature, with band gaps of 7.99 and 7.26 eV, respectively. Additionally, we calculated the linear optical spectra, including dielectric function, absorption coefficient, refractive index, optical reflectivity, and energy loss function. Based on the results obtained, these materials could be used in various optoelectronic devices operating in the UV spectrum and in energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call