Abstract

Physical mapping of 5S rDNA in 2 species of knifefishes, Gymnotuspantanal and G. paraguensis (Gymnotiformes), was performed using fluorescence in situ hybridization with a 5S rDNA probe. The 5S rDNA PCR product from the genomes of both species was also sequenced and aligned to determine non-transcribed spacer sequences (NTS). Both species under study had different patterns of 5S rDNA gene cluster distribution. While in the karyotype of G. pantanal two 5S rDNA-bearing pairs were observed, the karyotype of G. paraguensis possessed as many as 19 such pairs. Such multiplication of 5S rDNA gene clusters might be caused by the involvement of transposable elements because the NTS of G. paraguensis was 400 bp long with high identity (90%) with a mobile transposable element called Tc1-like transposon, described from the cyprinid fish Labeo rohita.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.