Abstract

Many eukaryotic cells are able to perform directional mechanosensing by directly measuring minute spatial differences in the mechanical stress on their membranes. Here, we explore the limits of a single mechanosensitive channel activation using a two-state double-well model for the gating mechanism. We then focus on the physical limits of directional mechanosensing by a single cell having multiple mechanosensors and subjected to a shear flow inducing a nonuniform membrane tension. Our results demonstrate that the accuracy in sensing the mechanostimulus direction not only increases with cell size and exposure to a signal, but also grows for cells with a near-critical membrane prestress. Finally, the existence of a nonlinear threshold effect, fundamentally limiting the cell's ability to effectively perform directional mechanosensing at a low signal-to-noise ratio, is uncovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.