Abstract

This paper advocates physical layer security of maximal ratio combining (MRC) in wiretap two-wave with diffuse power fading channels. In such a wiretap channel, we consider that confidential messages transmitted from a single antenna transmitter to an M-antenna receiver are overheard by an N-antenna eavesdropper. The receiver adopts MRC to maximize the probability of secure transmission, whereas the eavesdropper adopts MRC to maximize the probability of successful eavesdropping. We derive the secrecy performance for two practical scenarios: 1) the eavesdropper's channel state information (CSI) is available at the transmitter and 2) the eavesdropper's CSI is not available at the transmitter. For the first scenario, we develop a new analytical framework to characterize the average secrecy capacity as the principal security performance metric. Specifically, we derive new closed-form expressions for the exact and asymptotic average secrecy capacity. Based on these, we determine the high signal-to-noise ratio power offset to explicitly quantify the impacts of the main channel and the eavesdropper's channel on the average secrecy capacity. For the second scenario, the secrecy outage probability is the primary security performance metric. Here, we derive new closed-form expressions for the exact and asymptotic secrecy outage probability. We also derive the probability of nonzero secrecy capacity. The asymptotic secrecy outage probability explicitly indicates that the positive impact of M is reflected in the secrecy diversity order and the negative impact of N is reflected in the secrecy array gain. Motivated by this, we examine the performance gap between N and N+1 antennas based on their respective secrecy array gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.