Abstract
In this paper, we present a comprehensive investigation on the secrecy performance of opportunistic relay selection systems employing the decode-and-forward protocol over Rayleigh fading channels. Considering a practical setting where direct link between the source node (Alice) and the destination node (Bob) is available, we study the secrecy performance of three different diversity combining schemes, namely, maximum ratio combining (MRC), distributed selection combining (DSC), and distributed switch-and-stay combining (DSSC). Throughout the analysis, we consider two different scenarios based on the availability of the eavesdropper's channel state information (CSI), i.e., Scenario A, where the eavesdropper's CSI is not available at Alice and the relay, and Scenario B, where Alice and the relay have knowledge about the eavesdropper's CSI. For Scenario A, we derive exact closed-form expressions for secrecy outage probability and simple asymptotic approximations for the secrecy outage probability, which enable the characterization of the achievable secrecy diversity order and coding gains. For Scenario B, we derive closed-form expressions for the achievable secrecy rates. For both scenarios, we investigate the impact of feedback delay (outdated CSI) on the secrecy performance wherein exact and asymptotic secrecy outage probability and closed-form expressions of the secrecy achievable rates are obtained. Our analytical findings suggest that both the MRC and DSC schemes achieve the maximum diversity order of K+1 where K is the number of relays. In addition, the feedback delay has a significant impact on the achievable secrecy performance by reducing the achievable diversity order to two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.