Abstract
In this paper, we consider a two-way relay system where the two sources can only communicate through an untrusted intermediate relay and investigate the physical layer security issue in this two-way untrusted relay scenario. Specifically, we regard the intermediate relay as an eavesdropper from which the information transmitted by the sources needs to be kept confidential, despite the fact that its cooperation in relaying this information is essential. We first indicate that a nonzero secrecy rate is indeed achievable in this two-way untrusted relay system even without the help of external friendly jammers. As for the system with friendly jammers, after further analysis, we can obtain the secrecy rate of the sources can be effectively improved by utilizing proper jamming power from the friendly jammers. Then, we formulate a Stackelberg game between the sources and the friendly jammers as a power control scheme to achieve the optimized secrecy rate of the sources, in which the sources are treated as the sole buyer and the friendly jammers are the sellers. In addition, the optimal solutions of the jamming power and the asking prices are given, and a distributed updating algorithm to obtain the Stackelberg equilibrium is provided for the proposed game. Finally, the simulation results verify the properties and efficiency of the proposed Stackelberg-game-based scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.