Abstract

The current research on physical layer security is far from implementations in practical networks, arguably due to impractical assumptions in the literature and the limited applicability of physical layer security. Aiming to reduce the gap between theory and practice, this thesis focuses on wireless physical layer security towards practical assumptions and requirements. In the first half of the thesis, we reduce the dependence of physical layer security on impractical assumptions. The secrecy enhancements and analysis based on impractical assumptions cannot lead to any true guarantee of secrecy in practical networks. The current study of physical layer security was often based on the idealized assumption of perfect channel knowledge on both legitimate users and eavesdroppers. We study the impact of channel estimation errors on secure transmission designs. We investigate the practical scenarios where both the transmitter and the receiver have imperfect channel state information (CSI). Our results show how the optimal transmission design and the achievable throughput vary with the amount of knowledge on the eavesdropper’s channel. Apart from the assumption of perfect CSI, the analysis of physical layer security often ideally assumed the number of eavesdropper antennas to be known. We develop an innovative approach to study secure communication systems without knowing the number of eavesdropper antennas by introducing the concept of spatial constraint into physical layer security. That is, the eavesdropper is assumed to have a limited spatial region to place (possibly an infinite number of) antennas. We show that a non-zero secrecy rate is achievable with the help of a friendly jammer, even if the eavesdropper places an infinite number of antennas in its spatial region. In the second half of the thesis, we improve the applicability of physical layer security. The current physical layer security techniques to achieve confidential broadcasting were limited to application in single-cell systems. The primary challenge to achieve confidential broadcasting in the multi-cell network is to deal with not only the inter-cell but also the intra-cell information leakage and interference. To tackle this challenge, we design linear precoders performing confidential broadcasting in multi-cell networks. We optimize the precoder designs to maximize the secrecy sum rate with based on the large-system analysis. Finally, we improve the applicability of physical layer security from a fundamental aspect. The analysis of physical layer security based on the existing secrecy metric was often not applicable in practical networks. We propose new metrics for evaluating the secrecy of transmissions over fading channels to address the practical limitations of using existing secrecy metrics for such evaluations. The first metric establishes a link between the concept of secrecy outage and the eavesdropper’s ability to decode confidential messages. The second metric provides an error-probability-based se-

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call