Abstract

Common-signal-induced synchronization of semiconductor lasers with optical feedback inspired a promising physical-layer key distribution with information-theoretic security and potential in high rate. A significant challenge is the requirement to shorten the synchronization recovery time for increasing the key rate without sacrificing the operation parameter space for security. Here, open-loop synchronization of wavelength-tunable multi-section distributed Bragg reflector lasers is proposed as a solution for physical-layer key distribution. Experiments show that the synchronization is sensitive to two operation parameters, i.e., currents of grating section and phase section. Furthermore, fast wavelength-shift keying synchronization can be achieved by direct modulation on one of the two currents. The synchronization recovery time is shortened by one order of magnitude compared to close-loop synchronization. An experimental implementation is demonstrated with a final key rate of 5.98 Mbit/s over 160 km optical fiber distance. It is thus believed that fast-tunable multi-section semiconductor lasers open a new avenue for a high-rate physical-layer key distribution using laser synchronization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call