Abstract

This study has investigated the microscopic mechanisms of ultralow lattice thermal conductivity by the first-principles density functional theory. By solving the phonon Boltzmann equation iteratively, we find that the thermal conductivity of the lattice is abnormally low and that glass like heat transfer behavior occurs. Therefore, in addition to the contribution about the particle-like propagation to heat transport, the off-diagonal elements of the heat-flux operator through wave-like interbranch tunneling of phonon modes are also considered. The results provided new insights into the minimum thermal conductivity (κL) for Cs2SnBr6 (0.17 W m-1 K-1 at 450 K). It was also found that polar optical phonon scattering severely affects carrier lifetime. In addition, an impressive thermoelectric figure of merit of 0.55 at 450 K for Cs2SnBr6 was obtained in the case of doping p-type carriers. The study helps us understand the ultralow κL in complex crystals with strong anharmonicity and find that Cs2SnBr6 is a new and promising thermoelectric material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call