Abstract

This work has attempted to provide answer to the interaction of sonolysis and enzymatic treatment on degradation of recalcitrant dyes in a combined treatment. The model system comprises of two dyes, acid red and malachite green as model pollutants, along with horseradish peroxidase as a model enzyme and ultrasound of 20 kHz frequency. A dual approach of coupling experimental results with simulations of cavitation bubble dynamics has been adopted. Utilization of oxidation potential of horseradish peroxidase has been found to be a function of convection level in the medium. Cavitation phenomenon is found to have an adverse effect on enzyme action due to generation of high amplitude shock waves, which denature the enzyme. Degradation of dye at high static pressure increases due to absence of cavitation and high energy interaction (or collisions) between enzyme and dye molecules, which are beneficial towards enzymatic oxidation of the latter. High intensity convection generated by ultrasound also obviates need for an external shielding agent such as PEG that prevents attachment of the phenoxy radicals to enzyme that blocks the active sites of the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.