Abstract

Exercising during pregnancy has been shown to improve spatial learning and short-term memory, as well as increase brain-derived neurotrophic factor mRNA levels and hippocampal cell survival in juvenile offspring. However, it remains unknown if these effects endure into adulthood. In addition, few studies have considered how maternal exercise can impact cognitive functions that do not rely on the hippocampus. To address these issues, the present study tested the effects of maternal exercise during pregnancy on object recognition memory, which relies on the perirhinal cortex (PER), in adult offspring. Pregnant rats were given access to a running wheel throughout gestation and the adult male offspring were subsequently tested in an object recognition memory task at three different time points, each spaced 2-weeks apart, beginning at 60days of age. At each time point, offspring from exercising mothers were able to successfully discriminate between novel and familiar objects in that they spent more time exploring the novel object than the familiar object. The offspring of non-exercising mothers were not able to successfully discriminate between objects and spent an equal amount of time with both objects. A subset of rats was euthanized 1h after the final object recognition test to assess c-FOS expression in the PER. The offspring of exercising mothers had more c-FOS expression in the PER than the offspring of non-exercising mothers. By comparison, c-FOS levels in the adjacent auditory cortex did not differ between groups. These results indicate that maternal exercise during pregnancy can improve object recognition memory in adult male offspring and increase c-FOS expression in the PER; suggesting that exercise during the gestational period may enhance brain function of the offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call