Abstract

An effective and inexpensive method is developed to fabricate periodic arrays by sacrificial colloidal monolayer template route by chemical deposition and further physical deposition. By a colloidal template induced precursor solution dipping strategy, different periodic arrays of semi-hollow sphere array, inverse opal with monolayer pore arrays and hole arrays are obtained under different conditions. After magnetron sputtering deposition, their morphologies are changed to novel micro/nanostructured arrays of honeycomb-shaped arrays, hollow cavity arrays, and regular network arrays due to multiple direction deposition of sputtering deposition and shadow effect. After coating a gold thin layer, these periodic micro/nanostructured arrays are used as SERS active substrates and demonstrate a very stable SERS performance compared with periodic arrays achieved by direct colloidal template-induced chemical deposition. Additionally, a honeycomb-shaped array displays better SERS enhancement than that of a hollow cavity array or a regular network array. After optimization of honeycomb-shaped arrays with different periodicities, an array with periodicity of 350 nm demonstrates much stronger SERS enhancement and possesses a low detection limit of 10(-11) M R6G. Such stable SERS performance is useful for practical application in portable Raman detecting devices to detect organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.