Abstract
The surface properties of a biomaterial play an important role in cell behavior, e.g., recolonization, proliferation, and migration. Collagen is known to favor wound healing. In this study, collagen (COL)-based layer-by-layer (LbL) films were built using different macromolecules as a partner, i.e., tannic acid (TA), a natural polyphenol known to establish hydrogen bonds with protein, heparin (HEP), an anionic polysaccharide, and poly(sodium 4-styrene sulfonate) (PSS), an anionic synthetic polyelectrolyte. To cover the whole surface of the substrate with a minimal number of deposition steps, several parameters of the film buildup were optimized, such as the pH value of the solutions, the dipping time, and the salt (sodium chloride) concentration. The morphology of the films was characterized by atomic force microscopy. Built at an acidic pH, the stability of COL-based LbL films was studied when in contact with a physiological medium as well as the TA release from COL/TA films. In contrast to COL/PSS and COL/HEP LbL films, COL/TA films showed a good proliferation of human fibroblasts. These results validate the choice of TA and COL as components of LbL films for biomedical coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.