Abstract

The purpose of this work is to identify the effect of the cation nature on mechanisms of the sand consolidation with alkaline silicate solution at low temperature (70°C). Three diluted lithium, sodium and potassium silicate solutions with [Si]=2.8mol/l were used to agglomerate sand composed of grains which mean diameter is 340μm. According to the cation, different behaviors were observed in terms of the drying time and the material cohesion. Essentially, the drying time increases with decreasing cation size. In contrast, the compressive strength raises when the cation size increases inducing intra-granular rupture highlighted by SEM observations. This could find an explanation in the cation hydration sphere of cations. The strength of the cation–water electrostatic interaction becomes less important as the size of the cations increase leading to more ionic bonds. Despite their strong consolidation, potassium-based materials have a high solubility in water. This result is consistent with the ionic nature of bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.