Abstract

The suitability of bamboo's basic characteristics is very important for more specific purposes, such as composite raw materials. Anatomical, physical, mechanical, and chemical characteristics are some of bamboo's fundamental characteristics. This study analyses the basic properties, such as physical, mechanical, and chemical properties of bamboo from the Forest Area with Special Purpose (FASP) Pondok Buluh Sumatera Island, Indonesia (I); analyses the relationship between the properties of each type of bamboo (II); and chooses the type of bamboo with the best properties that have the potential to be applied to composite materials, such as laminated bamboo (III). This study used materials consisting of six species of bamboo from the FASP Pondok Buluh. The manufacture of physical and mechanical test samples refers to the ISO 22157 standard, 2004, while the chemical properties test refers to the TAPPI 1999 standard. The chemical, physical, and mechanical properties of bamboo vary widely among species. The lowest holocellulose and α-cellulose content were found in the Kuning Bamboo (B. vulgaris var. vittata). The content of holocellulose and α-cellulose causes the lowest density in Kuning Bamboo (B. vulgaris var. vittata). The Dasar Bamboo (Bambusa vulgaris) has the highest levels of lignin. The substances have an impact on moisture content, T/R ratio, and shear strength. The Dasar Bamboo (Bambusa vulgaris) has the lowest moisture content, the highest T/R ratio, and the highest shear strength. However, Betung Bamboo (Dendrocalamus asper) has the highest density in this study. The compressive strength of the Betung Bamboo (Dendrocalamus asper) has the highest value. Therefore, Betung bamboo and Dasar Bamboo in this study were potentially utilized for composite materials, such as laminated bamboo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.