Abstract

Abstract In this study, metal matrix composites of an aluminum alloy (AA2024) and B4C particles with volume fractions 3, 5, 7, and 10 vol% and with sizes 29 and 71 μm were produced using stir-casting technique. The effects of B4C particle content and size of boron carbide on the mechanical properties of the composites such as hardness, 0.2% yield strength, tensile strength, and fracture were investigated. Furthermore, the relation between particle content, microstructure, and particle distribution has been investigated. The hardness of the composites increased with increasing particle volume fraction and with decreasing particle size, although the tensile strength of the composites decreased with increasing particle volume fraction and with decreasing particle size. Scanning electron microscopic observations of the microstructures revealed that dispersion of the coarser sizes of B4C particles was more uniform while the finer particles led to agglomeration of the particles and porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.