Abstract

In this study, the effects of volume fraction and particle size of boron carbide on the abrasive wear properties of B4C particle reinforced aluminium alloy composites have been studied. For this purpose, a block-on-disc abrasion test apparatus was utilized where the samples slid against the abrasive suspension mixture at room conditions. The volume loss, specific wear rate and roughness of the samples have been evaluated. The effects of sliding time, particle content and particle size of B4C particles on the abrasive wear properties of the composites have been investigated. The dominant wear mechanisms were identified using scanning electron microscopy. The results showed that the specific wear rate of composites decreased with increasing particle volume fraction. Furthermore, the specific wear rate decreased with increasing the size of particle for the composites containing the same amount of B4C. Hence, it is deduced that aluminium alloy composites reinforced with larger B4C particles are more effective against the abrasive suspension mixture than those reinforced with smaller B4C particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.