Abstract

Both experimental and theoretical studies have been carried out to study the structure and magnetic properties of Mn2NiGa alloys. We have found, instead of forming L2(1) structure where both A and C sites are occupied by Mn atoms, the alloy favor a structure where the C site is occupied by Ni atoms and Mn atoms at A and B sites. The electronic structures of both cubic austenite and tetragonal martensite Mn2NiGa were calculated by self-consistent full-potential linearized-augmented plane-wave (FP-LAPW) method. Austenite Mn2NiGa materials show ferrimagnetism due to antiparallel but unbalanced magnetic moments of Mn atoms at A and B sublattices. The magnetic moment of Mn atoms decrease greatly upon martensitic transformation to a tetragonal structure with a 50% reduction in Mn moments at the A site and almost completely suppressed Mn moments at B sites. Consequently, martensite Mn2NiGa alloys show ferromagnetic coupling. Different magnetic orderings in martensite and austenite also lead to very different temperature dependence, with which the abnormal behavior of magnetization upon martensitic transformation can be understood. In the off-stoichiometric samples with composition between Ni2MnGa and Mn2NiGa, we show that additional Mn atoms that substitute for Ni atoms in Ni2MnGa have the same magnetic behaviors as Mn in Mn2NiGa phase, which successfully explains the dependence of the magnetization on Mn composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call