Abstract

Colloid mobility was determined in a system consisting of quartz sand or crushed Yucca Mountain tuff, simulated groundwater (J-13), and hydrophilic latex particles. Water content (theta) and ionic strength (I; DI water, 0.1x, 1x, 10x groundwater dilution) were manipulated to define limiting conditions for colloid transport atthe Yucca Mountain site. Colloid transport, measured with a centrifuge method at relatively high theta (saturation >36% for sand, >62% for crushed tuff) in DI water, was equivalent to transport at 100% saturation measured with conventional columns. When variables were isolated, increasing I and decreasing theta resulted in a greater extent of colloid deposition; I was more important at higher theta; physical properties were more important at lower theta. I and theta had an interactive effect on colloid deposition whereby synergism was generally observed, especially for simulated groundwater (1x); antagonism was observed at 10x groundwater dilution. At 19% moisture saturation on the crushed tuff, a decreasing rate of colloid deposition was observed. This corresponded to a hydrodynamic condition of 79% immobile water where solute tracers were excluded from a fraction of the pore volume. This suggests that a portion of the favorable sites for deposition were associated with the excluded or immobile water domain and were not accessible to colloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.