Abstract

Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.