Abstract

As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins—which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python’s native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley’s modification of Wallace’s line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans.

Highlights

  • IntroductionTrade in reptile skin and leather products is valued at $339 million, approximately 5% of the legal, global wildlife trade [21], with five Southeast Asian python species (Malayopython reticulatus ssp., Python bivittatus ssp., P. curtus, P. brongersmai and P. breitensteini) being heavily exploited for this purpose

  • When sub-optimal, comparative observations such as morphological comparison are not possible and results remain provisional. To this end we present mitochondrial sequence data derived from a collection of historical and contemporary samples of M. reticulatus to investigate broad-scale geographic structure of genetic diversity across a significant portion of the species native range

  • This level of divergence has previously been reported for three subspecies of Python curtus that were elevated to distinct species [52]; each subspecies contained less than 1% sequence divergence within the taxon, between 3% and 8.9% divergence between the subspecies, and 10%–12.4% sequence divergence from P. curtus sister species, M. reticulatus

Read more

Summary

Introduction

Trade in reptile skin and leather products is valued at $339 million, approximately 5% of the legal, global wildlife trade [21], with five Southeast Asian python species (Malayopython reticulatus ssp., Python bivittatus ssp., P. curtus, P. brongersmai and P. breitensteini) being heavily exploited for this purpose. Among these the reticulated python (M. reticulatus ssp.) is the most economically important species [18] with approximately 350,000 skins legally exported annually for the high-end fashion market alone [20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call