Abstract
The evolution and adaptation of S.japonicum, a zoonotic parasite that causes human schistosomiasis, remain unclear because of the lack of whole-genome data. We construct a chromosome-level S.japonicum genome and analyze it together with 72 samples representing six populations of the entire endemic region. We observe a Taiwan zoophilic lineage splitting from zoonotic populations ∼45,000 years ago, consistent with the divergent history of their intermediate hosts. Interestingly, we detect a severe population bottleneck in S.japonicum, largely coinciding with human history in Asia during the last glacial maximum. We identify several genomic regions underlying natural selection, including GATAD2A and Lmln, both showing remarkable differentiation among different areas. RNAi knockdown suggests association of GATAD2A with parasite development and infection in definitive hosts, while Lmln relates to the specificity of the intermediate hosts. Our study provides insights into the evolution of S.japonicum and serves as a resource for further studies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.