Abstract

BackgroundThe taxonomy and systematics of Salix subgenus Salix s.l. is difficult. The reliability and evolutionary implications of two important morphological characters (number of stamens, and morphology of bud scales) used in subgeneric classification within Salix remain untested, and a disjunct Old–New World distribution pattern of a main clade of subgenus Salix s.l., revealed by a previous study, lacks a reasonable explanation. To study these questions, we conducted phylogenetic analyses based on 4,688 bp of sequence data from four plastid (rbcL, trnD–T, matK, and atpB–rbcL) and two nuclear markers (ETS and ITS) covering all subgenera of Salix, and all sections of subgenus Salix s.l.ResultsSubgenus Salix came out as para- or polyphyletic in both nrDNA and plastid trees. The plastid phylogeny successfully resolved relationships among the major clades of Salix, but resolution within subgenus Salix s.l. remained low. Nevertheless, three monophyletic groups were identifiable in subgenus Salix s.l.: the ‘main clade’ of subgenus Salix s.l., with New and Old World species being reciprocally monophyletic; the section Triandroides clade; and the subgenus Pleuradenia clade. While nrDNA regions showed higher resolution within subgenus Salix s.l., they failed to resolve subgeneric relationships. Extensive, statistically significant gene-tree incongruence was detected across nrDNA–plastid as well as nrDNA ETS–ITS phylogenies, suggesting reticulate evolution or hybridization within the group. The results were supported by network analyses. Ancestral-state reconstructions indicated that multiple stamens and free bud scales represent the plesiomorphic states within Salix, and that several significant shifts in stamen number and bud scale morphology have occurred.ConclusionsSubgenus Salix s.l. is not monophyletic, and the evolutionary history of the subgenus has involved multiple reticulation events that may mainly be due to hybridization. The delimitation of subgenus Salix s.l. should be redefined by excluding section Triandrae and subgenus Pleuradenia from it. The evolutionary lability of bud-scale morphology and stamen number means that these characters are unreliable bases for classification. The disjunct Old–New World distribution of subgenus Salix s.l. appears to be linked to the profound climatic cooling during the Tertiary, which cut off gene exchange between New and Old World lineages.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0311-7) contains supplementary material, which is available to authorized users.

Highlights

  • The taxonomy and systematics of Salix subgenus Salix s.l. is difficult

  • It is clear that subgenus Chamaetia is morphologically closer to subgenus Vetrix than to subgenus Salix, it may be taxonomically useful to treat them as separate subgenera until more representatives of these two subgenera have been included in molecular studies

  • Among the subgenera previously split from subgenus Salix s.l., only Longifoliae and Pleuradenia are supported as being monophyletic

Read more

Summary

Introduction

The taxonomy and systematics of Salix subgenus Salix s.l. is difficult. The reliability and evolutionary implications of two important morphological characters (number of stamens, and morphology of bud scales) used in subgeneric classification within Salix remain untested, and a disjunct Old–New World distribution pattern of a main clade of subgenus Salix s.l., revealed by a previous study, lacks a reasonable explanation. The taxonomy and systematics of Salix have proven extremely difficult because of their dioecious reproduction, simple flowers, common natural hybridization, and large intraspecific phenotypic variation [1,3,4,5] Reflecting these difficulties, Salix was once split into at least 35 genera (as reviewed by Argus [6]), but numerous molecular-phylogenetic studies have shown that Salix is a robust monophyletic group that encompasses all of the putative generic segregates [7,8,9,10,11]. Because subgenus Salix as used by Skvortsov was later divided into several smaller subgenera, for the convenience of discussion, we will below refer to it as subgenus Salix s.l

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call