Abstract

Artemisia is the largest genus (ca. 350–500+ spp.) in the tribe Anthemideae and is composed of ecologically, morphologically, and chemically diverse species that are found primarily throughout the Northern Hemisphere. Two major centers of diversity for the genus are located in Eurasia and western North America, but phytogeographic links connecting these two regions are observed all across the North Pacific Rim and adjacent areas in the Arctic, including many islands and archipelagos. Previous phylogenetic studies have helped to clarify major lineages and identify likely sister relationships, but many questions remain unanswered regarding the relationships and migration history of New and Old World species. Here we investigate the phylogenetics of Artemisia within a biogeographic context centered in the Beringian Region and offer new hypotheses concerning species relationships, migration history, and the likely role of reticulate evolution in the genus. Our sampling included many new taxa and emphasized multiple accessions of widespread species, species from proposed refugia, and species with disjunct/vicariant distributions. The ITS phylogeny contained 173 accessions (94 new and 79 from GenBank) and indicated that Artemisia is paraphyletic by the exclusion of several small Asian genera and the North American genus Sphaeromeria. Following a survey of thirteen chloroplast loci, phylogenies based on two plastid markers (psbA–trnH and rpl32–trnL spacers) were constructed with a reduced data set, and though largely consistent with the ITS topology, revealed several cases of possible introgression among New World and Beringian species. Our analysis reveals that North American Artemisia species have multiple origins, and that western North America has served as a source for some colonizing elements in eastern Asia and South America.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call