Abstract

Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree). Despite some significant differences, large parts were congruent between the 16S rRNA phylogeny and photosynthesis proteins. The phylogenetic relations demonstrated that bacteriochlorophyll biosynthesis had evolved in ancestors of phototrophic green bacteria much earlier as compared to phototrophic purple bacteria and that multiple events independently formed different lineages of aerobic phototrophic purple bacteria, many of which have very ancient roots. The Rhodobacterales clearly represented the youngest group, which was separated from other Proteobacteria by a large evolutionary gap.

Highlights

  • Anoxygenic photosynthesis is widely distributed among eubacteria and involves a number of genes for the photosynthetic reaction center and for the biosynthesis of photosynthetic pigments, bacteriochlorophylls, and carotenoids, which are essential elements to enable photosynthesis

  • Essential components of the type-II photosynthetic apparatus are represented by two membrane-spanning photosynthetic reaction center proteins that are common to all of these bacteria

  • In a comprehensive study based on the phylogeny of PufLM, it was shown that distinct lineages of Proteobacteria contained phototrophic representatives in 10 orders, including anaerobic as well as aerobic anoxygenic phototrophic purple bacteria [3]

Read more

Summary

Introduction

Anoxygenic photosynthesis is widely distributed among eubacteria and involves a number of genes for the photosynthetic reaction center and for the biosynthesis of photosynthetic pigments, bacteriochlorophylls, and carotenoids, which are essential elements to enable photosynthesis. While the biosynthesis of bacteriochlorophylls is common to all of them, the different structure of the photosynthetic reaction center clearly separates two groups of anoxygenic phototrophic bacteria, those having a type-I and those having a type-II photosystem [1,2,3]. Those bacteria employing a photosystem type-II photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), as well as Gemmatimonas and Chloroflexus, with their photosynthetic relatives [1,3,4,5]. Together with an additional protein (PufH = PuhA), they form the core structure of the type-II photosynthetic reaction center in all phototrophic purple bacteria (Proteobacteria and Gemmatimonas). In a comprehensive study based on the phylogeny of PufLM, it was shown that distinct lineages of Proteobacteria contained phototrophic representatives in 10 orders, including anaerobic as well as aerobic anoxygenic phototrophic purple bacteria [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call