Abstract

Simple SummaryWolbachia pipientis is a maternally inherited endosymbiont of arthropods and filarial nematodes, and was reported to occur in Paederus fuscipes, a beetle that causes dermatitis linearis and conjunctivitis in humans when they come in contact with skin. In this study, we report the phylogenetic position and density dynamics of Wolbachia in P. fuscipes. The phylogeny of Wolbachia, based on an analysis of MLST genotyping, showed that Wolbachia from P. fuscipes belongs to supergroup B. Quantitative PCR indicated that the infection density in adults was higher than in any other life stage (egg, larva or pupa), and that reproductive tissue in adults had the highest infection densities, with similar densities in the sexes. These findings provide a starting point for understanding Wolbachia infection dynamics in P. fuscipes, and interactions with other components of the microbiota.The maternally inherited obligate intracellular bacteria Wolbachia infects the reproductive tissues of a wide range of arthropods and affects host reproduction. Wolbachia is a credible biocontrol agent for reducing the impact of diseases associated with arthropod vectors. Paederus fuscipes is a small staphylinid beetle that causes dermatitis linearis and conjunctivitis in humans when they come into contact with skin. Wolbachia occur in this beetle, but their relatedness to other Wolbachia, their infection dynamics, and their potential host effects remain unknown. In this study, we report the phylogenetic position and density dynamics of Wolbachia in P. fuscipes. The phylogeny of Wolbachia based on an analysis of MLST genotyping showed that the bacteria from P. fuscipes belong to supergroup B. Quantitative PCR indicated that the infection density in adults was higher than in any other life stage (egg, larva or pupa), and that reproductive tissue in adults had the highest infection densities, with similar densities in the sexes. These findings provide a starting point for understanding the Wolbachia infection dynamics in P. fuscipes, and interactions with other components of the microbiota.

Highlights

  • Wolbachia pipientis is the most widespread endosymbiotic bacterium of insects and other arthropods, infecting perhaps two-thirds of present-day insect species, as well as about 40% of terrestrial arthropod species [1]

  • The transmission of Wolbachia is predominantly vertical and secondarily horizontal [2]. It can induce a number of reproductive manipulations in its host, including cytoplasmic incompatibility [3], thelytokous parthenogenesis [4], feminization of genetic males [5] and male killing [6]

  • The strain identified by the Wolbachia MLST database has the designation

Read more

Summary

Introduction

Wolbachia pipientis is the most widespread endosymbiotic bacterium of insects and other arthropods, infecting perhaps two-thirds of present-day insect species, as well as about 40% of terrestrial arthropod species [1]. Wolbachia may generate positive fitness effects on numerous hosts, such as filarial nematodes, fruit flies, bedbugs and wasps [7,8,9,10], and decrease host transmission of dengue [11], malaria [12], West Nile virus [13] and other pathogens [14]. It is considered as a novel method for controlling mosquito- and vector-borne human diseases [15]. Population replacement approaches involve the release of both male and female mosquitoes that carry a heritable factor that reduces or blocks their ability to transmit viruses [15]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.