Abstract

Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes.

Highlights

  • Organisms across the tree of life routinely experience changes in osmotic conditions

  • The ability to adjust to changing osmotic conditions is crucial to the survival of organisms across the tree of life

  • We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain

Read more

Summary

Introduction

Organisms across the tree of life routinely experience changes in osmotic conditions. The ability to adjust physiological responses to these osmotic fluxes plays a role in processes ranging from desiccation tolerance and virulence of pathogenic bacteria [1,2], to drought resistance in food crops [3], to mammalian reproduction [4]. There exists a large body of work on osmoadaptation, there remain a number of gaps in our knowledge. How are different osmoadaptation strategies dispersed across phylogenetic space? Does there exist a strict delimitation between obligate halophiles and halotolerant organisms, or do these designations obscure a more nuanced biological reality? How do organisms with a wide range of salinity tolerances How are different osmoadaptation strategies dispersed across phylogenetic space? Does there exist a strict delimitation between obligate halophiles and halotolerant organisms, or do these designations obscure a more nuanced biological reality? How do organisms with a wide range of salinity tolerances

Author Summary
Findings
Materials and Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call