Abstract

BackgroundThe subfamily Phascolostrongylinae (Superfamily Strongyloidea) comprises nematodes that are parasitic in the gastrointestinal tracts of macropodid (Family Macropodidae) and vombatid (Family Vombatidae) marsupials. Currently, nine genera and 20 species have been attributed to the subfamily Phascolostrongylinae. Previous studies using sequence data sets for the internal transcribed spacers (ITS) of nuclear ribosomal DNA showed conflicting topologies between the Phascolostrongylinae and related subfamilies. Therefore, the aim of this study was to validate the phylogenetic relationships within the Phascolostrongylinae and its relationship with the families Chabertiidae and Strongylidae using mitochondrial amino acid sequences.MethodsThe sequences of all 12 mitochondrial protein-coding genes were obtained by next-generation sequencing of individual adult nematodes (n = 8) representing members of the Phascolostrongylinae. These sequences were conceptually translated and the phylogenetic relationships within the Phascolostrongylinae and its relationship with the families Chabertiidae and Strongylidae were inferred from aligned, concatenated amino acid sequence data sets.ResultsWithin the Phascolostrongylinae, the wombat-specific genera grouped separately from the genera occurring in macropods. Two of the phascolostrongyline tribes were monophyletic, including Phascolostrongylinea and Hypodontinea, whereas the tribe Macropostrongyloidinea was paraphyletic. The tribe Phascolostrongylinea occurring in wombats was closely related to Oesophagostomum spp., also from the family Chabertiidae, which formed a sister relationship with the Phascolostrongylinae.ConclusionThe current phylogenetic relationship within the subfamily Phascolostrongylinae supports findings from a previous study based on ITS sequence data. This study contributes also to the understanding of the phylogenetic position of the subfamily Phascolostrongylinae within the Chabertiidae. Future studies investigating the relationships between the Phascolostrongylinae and Cloacininae from macropodid marsupials may advance our knowledge of the phylogeny of strongyloid nematodes in marsupials.Graphical

Highlights

  • The subfamily Phascolostrongylinae (Superfamily Strongyloidea) comprises nematodes that are parasitic in the gastrointestinal tracts of macropodid (Family Macropodidae) and vombatid (Family Vombatidae) marsupials

  • Nucleotide and amino acid sequence comparisons The sliding window analyses (SWAN) revealed that the nucleotide diversity across the alignment of 12 concatenated mitochondrial proteincoding genes ranged from 0.084 to 0.290 (Fig. 1)

  • Pairwise amino acid sequence differences among species of Phascolostrongylinae ranged between 0.60% and 10.6% (Table 2)

Read more

Summary

Introduction

The subfamily Phascolostrongylinae (Superfamily Strongyloidea) comprises nematodes that are parasitic in the gastrointestinal tracts of macropodid (Family Macropodidae) and vombatid (Family Vombatidae) marsupials. The subfamily comprising nine genera and 20 species, parasitises macropodid (Family Macropodidae) and vombatid (Family Vombatidae) marsupials. A few exceptions are found in the stomachs of their hosts, including Paramacropostrongylus from grey kangaroos (Macropus spp.) and Wallabicola from swamp wallabies (Wallabia bicolor) [1]. The genera of the Macropostrongyloidinea, including Macropostrongyloides, Paramacropostrongylus, Torquenema and Wallabicola, possess cylindrical buccal capsules surrounded by teeth or denticles [2]. Morphological examination of these nematodes led to the description of two new genera, namely Wallabicola dissimilis (formerly M. dissimilis) from the swamp wallaby, Wallabiocola bicolor and Torquenema toraliforme (formerly P. toraliformis) from the eastern grey kangaroo Macropus giganteus [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call