Abstract

Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to clean up oil pollution after an oil spill. In order to obtain a systematic understanding of the succession of bacterial communities associated with oil bioremediation, sediments collected from the Penglai 19-3 oil platform were co-incubated with crude oil. Oil biodegradation was assessed on the basis of changes in oil composition monitored by GC–MS. Changes in the bacterial community structure were detected by two 16S rRNA gene based culture-independent methods, denaturing gradient gel electrophoresis (DGGE) and clone library. The results suggested that crude oil was rapidly degraded during the 30-day bioremediation period. Bacteria affiliated with the genus Pseudomonas dominated all three clone libraries. But dramatic changes were also detected in the process of biodegradation of crude oil. The “professional hydrocarbonocastic bacteria” (e.g., Alcanivorax) became abundant in the two samples during the bioremediation period. Meanwhile, δ-proteobacteria was only detected in the two samples. Information on the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.