Abstract
Anoxygenic photosynthetic bacteria are common inhabitants of wastewater: we found that Rhodopseudomonas palustris and Afifella marina in eutrophic conditions only partially degraded the azo dye (50 mmol m−3), Methyl Red, but completely degraded it under specially defined conditions. The azo dye is potentially a source of both carbon and fixed nitrogen. Rhodopseudomonas palustris and Afifella marina can live heterotrophically, photoheterotrophically or photoautotrophically under anoxic conditions where they can fix N2 if no organic nitrogen or NH3 is available. If organic carbon sources are available or if NH3 is present, the cells again only partially catabolised Methyl Red. In the absence of no alternative organic carbon sources and no NH3, the cells almost completely spectroscopically decolourised Methyl Red in 4 days. In sewage ponds the ready availability of alternative organic carbon and NH3 would result in only partial removal of Methyl Red. Rhodopseudomonas cells responded to the availability of Methyl Red in N-free media, by increasing both Optimum irradiance and maximum ETR (Eopt 276.3 μmol quanta m−2 s−1; ETRmax 391.4 μmol e− g−1 BChl a s−1) compared to control cells incubated in PM media with no organic carbon source and no fixed N-source (Eopt 115.2 μmol quanta m−2 s−1; ETRmax = 153.0 μmol e− g−1 BChl a s−1. If no alternative C or N sources are available, Rhodopseudomonas embedded in alginate biobeads will completely and repeatedly break down Methyl Red. The marine Afifella readily broke down Methyl Red but again breakdown was only complete if alternative carbon and no fixed nitrogen sources were available. The toxicity of the breakdown products produced by photosynthetic bacteria from azo-dyes needs to be followed up. Photosynthetic bacterial-alginate biobeads have long lifetimes (Rhodopseudomonas ≈ 2 months, Afifella > 6 months) making them of great biotechnological potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.