Abstract
BackgroundPhylogenetic analysis of norovirus (NoV) is efficient for tracking NoV transmission. To determine the widespread NoV strains in Seoul, we conducted an extensive phylogenetic characterization of NoV-positives from 1659 diarrheal specimens collected in 2014–2016 for the Seoul NoV-surveillance.ResultsWhen the large numbers of NoV partial VP1 genome sequences were analyzed in acute gastroenteritis patients along with the phylogenetic characterization, we could identify molecular epidemiologic patterns based on the genetic characteristics of sporadic NoV strains circulating in Seoul, which could provide a detailed description of the genome-wide and community-wide NoV evolution in each genotype. The average NoV detection rate in our study period was 16.34% that was increased by 7.44% from 13.17% in 2014 to 20.61% in 2016. Prevalence of NoV GI and GII was 4.43% and 93.36%, respectively, and the GII.4, GII.17, and GII.3 were found to be the major type among 17 genotypes of NoV. The most prevalent one was GII.4 (50.92%) that was followed by GII.17 (18.08%) and GII.3 (9.96%). According to an extensive phylogenetic analysis based on partial VP1 sequences of 1008 NoV (276 sporadic, 518 outbreak and 214 reference), pandemic strains of GII.17, GII.4 and GII.3 have emerged in succession during the 2014-2016 Seoul NoV-surveillance. GII.17 emerged as GII.17|Kawasaki323 in 2014, and became the predominant genotype in 2015 with GII.17|2014_Kawasaki lineages (CUHK-NS-616/Kawasaki308). The formerly predominant GII.4 remained high-level with GII.4|2012_Sydney in 2014 and internally replaced to GII.4|2016_Kawasaki194 lineage (NOR-2565/NOR-2558/OH16002) that caused the sporadic NoV explosion since December 2015. Sporadically prevalent GII.3|Hu/Aichio334-13/2013 failed to develop any outbreaks, whereas sporadic GII.3|Hu/3-28/2015/HNZZ/CHN caused heavy outbreaks in Seoul without preparation time since November 2016.ConclusionsThis is the first extensive phylogenetic study revealing the important events of NoV strains circulating in Seoul. Particularly, our study period from 2014 to 2016 was very dynamic with the emergences of the three main NoV strains (GII.17|2014_Kawasaki, GII.4|2016_Kawasaki194 and GII.3|Hu/3-28/2015/HNZZ/CHN) every year. We are sure that it is hard to detect above findings by simple conventional analysis. Our present study reports a future paradigm of the NoV molecular epidemiology, which might be highly valuable to track new strains and predict oncoming outbreaks.
Highlights
Phylogenetic analysis of norovirus (NoV) is efficient for tracking NoV transmission
NoV is a nonenveloped, positive-sense, single-stranded RNA virus with a linear genome (7.5–7.7 kb), which belongs to the family Caliciviridae with three open reading frames (ORFs) encoding nine structural and nonstructural proteins [3,4,5]
To characterize phylogenetic epidemiology of NoV strains circulating in Seoul, we first conducted an extensive phylogenetic analysis based on partial VP1 sequences of total 1008 NoV (794 NoV positives from 4073 Acute gastroenteritis (AGE) specimens and 214 global references from NoroNet and GenBank)
Summary
To determine the widespread NoV strains in Seoul, we conducted an extensive phylogenetic characterization of NoV-positives from 1659 diarrheal specimens collected in 2014–2016 for the Seoul NoV-surveillance. Acute gastroenteritis (AGE) causes one of the major public health problems [1], and NoV has been reported as the most common cause of AGE [2]. NoV is a nonenveloped, positive-sense, single-stranded RNA virus with a linear genome (7.5–7.7 kb), which belongs to the family Caliciviridae with three open reading frames (ORFs) encoding nine structural and nonstructural proteins [3,4,5]. ORF1 encodes nonstructural proteins such as NTPase, protease, and RNA-dependent RNA polymerase (RdRp). ORF2 overlaps ORF1 by a short region and encodes the major capsid protein, VP1. ORF3 encodes the minor capsid protein, VP2 [6]. NoVs are highly diverse and currently sub-divided into six genomic groups (GI/GII/GIII/GIV/GV/GVI) with more than 40 genotypes based on their VP1 sequences [7, 8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have