Abstract

ABSTRACTMany cyanobacteria are highly adaptable to light quality, and many species undergo a complex life cycle. In this study we show that adaptive changes in the photosynthetic apparatus of cyanobacteria are not only caused by environmental, but also by developmental factors. Spectral confocal laser scanning microscopy (CLSM) was used to analyse in vivo the fluorescence spectra of the photosynthetic pigments chlorophyll a (Chl a), allophycocyanin (APC), phycocyanin (PC) and phycoerythrin (PE) of two Nostoc punctiforme strains. Changes in pigment fluorescence emission occurred in different developmental stages. Strain 1:1‐26 showed an emission maximum at 674 nm in motile hormogonia stages, whereas vegetative stages showed maxima at 658 and 575 nm. These changes were not caused by chromatic adaptation. In contrast, the second strain (1:1‐26lg) showed distinct fluorescence spectra, pigment localization and clear chromatic adaptation in red light. When these properties are known, both strains can be easily distinguished by the spectral CLSM method, which also allows the localization of the pigments within single cells. To calculate the contribution of individual phycobiliproteins to the observed changes, fluorescence spectra were analysed by spectral unmixing. This allowed the mathematical estimation of fluorescence shares for the individual phycobiliproteins in different developmental stages and both before and after chromatic adaptation. It is concluded that care should be taken when characterizing cyanobacteria by differences in pigment fluorescence, because these differences are influenced not only by chromatic adaptation, but also developmental stages. Spectral CLSM offers a powerful method to study the phycobiliprotein composition in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call