Abstract
In this paper we consider the joint performance of fountain codes and 802.11a/g PHY modulation/coding. We consider optimality both in terms of maximizing goodput and minimizing energy, and results are presented for both theoretical and experimental channel models. In contrast to studies in cellular networks, we find that in 802.11a/g WLANs the cross-layer approach of a higher-layer fountain coding with a PHY layer modulation and FEC coding can yield very limited gains, and the PHY modulation/rate that optimizes the uncoded multicast performance is also close to that for fountain-coded multicast traffic over a wide-range of network conditions. This is potentially an important observation as it indicates that in 802.11a/g WLANs cross-layer design for multicast rate control would bring few benefits and PHY layer rate control can be carried out without regard to the use of fountain coding at higher layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.