Abstract

In this work we describe the implementation details of a protocol suite for a secure and reliable over-the-air reprogramming of wireless restricted devices. Although, recently forward error correction codes aiming at a robust transmission over a noisy wireless medium have extensively been discussed and evaluated, we believe that the clear value of the contribution at hand is to share our experience when it comes to a meaningful combination and implementation of various multihop (broadcast) transmission protocols and custom-fit security building blocks: For a robust and reliable data transmission we make use of fountain codes a.k.a. rateless erasure codes and show how to combine such schemes with an underlying medium access control protocol, namely a distributed low duty cycle medium access control (DLDC-MAC). To handle the well known problem of packet pollution of forward-error-correction approaches where an attacker bogusly modifies or infiltrates some minor number of encoded packets and thus pollutes the whole data stream at the receiver side, we apply homomorphic message authentication codes (HomMAC). We discuss implementation details and the pros and cons of the two currently available HomMAC candidates for our setting. Both require as the core cryptographic primitive a symmetric block cipher for which, as we will argue later, we have opted for the PRESENT, PRIDE and PRINCE (exchangeable) ciphers in our implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.