Abstract

Optical, morphological and photovoltaic properties are investigated for ternary solar cells containing a traditional poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric-acid-methyl ester (P3HT:PCBM) bulkheterojunction (BHJ) active layer modified with different concentrations of a novel ruthenium complex [Ru(N-P)2(O-O)], where N-P abbreviates 8-(diphenylphosphino)quinolone and O-O = oxalate dianion. At a low concentration of the Ru-complex (2.5 wt%) the device efficiency is improved by 50% compared with the reference binary devices at ambient conditions. This substantial efficiency enhancement is attributed to the role of the Ru-complex in improving light absorption over a wavelength range of (295–800 nm) in combination with a better matching of the energy levels of the ternary blend system. Moreover, at low concentration, the Ru-complex has a positive impact on the morphology of the active layer in the device. The inclusion of Ru-complex increases the P3HT crystallinity substantially with virtually no effect on the size and orientation of the crystalline lamellae. The enhancement in device efficiency becomes less pronounced with increasing the concentration of the Ru-complex due to the formation of several micron-size domains of [Ru(N-P)2(O-O)] in the ternary active layers. These large domains negatively affect the optical properties and morphology, thus inhibiting efficient charge generation and transport in the corresponding solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.