Abstract
Feroxyhite (δ-FeOOH) nanomaterials were successfully synthesized through the atmospheric AC microplasma method at room temperature from ferrous sulfate aqueous solutions. Various syntheses conditions, including electric voltage, electric field strength, ferrous concentration, hydrogen peroxide concentration, and reaction duration, were systematically investigated. The synthesized products were characterized through x-ray diffraction, UV–vis absorption spectroscopy, photoluminescence spectroscopy, infra-red spectroscopy, and electron microscopy. The bandgap of the produced materials were strongly dependent of the ferrous concentration while the product ratio was dependent on all experimental conditions. The synthesis mechanism was thoroughly discussed. The synthesized nanomaterials were amorphous nanospheres, showing superparamagnetic properties at room temperature. The synthesized oxyhydroxide is a potential photovoltaic material besides its reported applications in photocatalysts and supercapacitors. The application of this synthesis technique could be extended to synthesize other oxy-hydroxide nanomaterials for renewable energy applications facilely, scalablely, cost-effectively, and environmentally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have