Abstract

The [Re(I)(CO)(3)(4,7-dimethyl-1,10-phenanthroline)(histidine-124)(tryptophan-122)] complex, denoted [Re(I)(dmp)(W122)], of Pseudomonas aeruginosa azurin behaves as a single photoactive unit that triggers very fast electron transfer (ET) from a distant (2 nm) Cu(I) center in the protein. Analysis of time-resolved (ps-μs) IR spectroscopic and kinetics data collected on [Re(I)(dmp)(W122)AzM] (in which M=Zn(II), Cu(II), Cu(I); Az=azurin) and position-122 tyrosine (Y), phenylalanine (F), and lysine (K) mutants, together with excited-state DFT/time-dependent (TD)DFT calculations and X-ray structural characterization, reveal the character, energetics, and dynamics of the relevant electronic states of the [Re(I)(dmp)(W122)] unit and a cascade of photoinduced ET and relaxation steps in the corresponding Re-azurins. Optical population of [Re(I)(imidazole-H124)(CO)(3)]→dmp (1)CT states (CT=charge transfer) is followed by around 110 fs intersystem crossing and about 600 ps structural relaxation to a (3)CT state. The IR spectrum indicates a mixed Re(I)(CO)(3),A→dmp/π→π(*)(dmp) character for aromatic amino acids A122 (A=W, Y, F) and Re(I)(CO)(3)→dmp metal-ligand charge transfer (MLCT) for [Re(I)(dmp)(K122)AzCu(II)]. In a few ns, the (3)CT state of [Re(I)(dmp)(W122)AzM] establishes an equilibrium with the [Re(I)(dmp(.-))(W122(.+))AzM] charge-separated state, (3)CS, whereas the (3)CT state of the other Y, F, and K122 proteins decays to the ground state. In addition to this main pathway, (3)CS is populated by fs- and ps-W(indole)→Re(II) ET from (1)CT and the initially "hot" (3)CT states, respectively. The (3)CS state undergoes a tens-of-ns dmp(.-)→W122(.+) ET recombination leading to the ground state or, in the case of the Cu(I) azurin, a competitively fast (≈30 ns over 1.12 nm) Cu(I)→W(.+) ET, to give [Re(I)(dmp(.-))(W122)AzCu(II)]. The overall photoinduced Cu(I)→Re(dmp) ET through [Re(I)(dmp)(W122)AzCu(I)] occurs over a 2 nm distance in <50 ns after excitation, with the intervening fast (3)CT-(3)CS equilibrium being the principal accelerating factor. No reaction was observed for the three Y, F, and K122 analogues. Although the presence of [Re(dmp)(W122)AzCu(II)] oligomers in solution was documented by mass spectrometry and phosphorescence anisotropy, the kinetics data do not indicate any significant interference from the intermolecular ET steps. The ground-state dmp-indole π-π interaction together with well-matched W/W(.+) and excited-state [Re(II)(CO)(3)(dmp(.-))]/[Re(I)(CO)(3)(dmp(.-))] potentials that result in very rapid electron interchange and (3)CT-(3)CS energetic proximity, are the main factors responsible for the unique ET behavior of [Re(I)(dmp)(W122)]-containing azurins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call