Abstract
Lignin is a major terrestrial source of chromophoric dissolved organic matter (CDOM), and studying the phototransformation of lignin monomers and their related compounds can enhance our understanding of CDOM intramolecular interactions. Coniferyl aldehyde (Coni) and sinapaldehyde (Sina) form ground-state complexes with CDOM, with equilibrium constants of 7,800 (± 1,800) and 20,000 (± 2,000) M−1, respectively. In comparison, vanillin (Van) exhibits minimal affinity for CDOM complexation. The bimolecular reaction rate constants between singlet oxygen (1O2) and these phenolic carbonyl compounds ranged from 0.46 (± 0.02) to 1.8 (± 0.1) × 107 M−1s−1, which is approximately one order of magnitude lower than their reaction rate constants (0.51 (± 0.02)–1.25 (± 0.02) × 108 M−1s−1) with the triplet excited state of CDOM (3CDOM*). In acidic CDOM solutions (pH 5.0), 1O2, H2O2, and organic peroxyl radicals had negligible impact on the transformation. Comparing the initial transformation rate in the presence and in the absence of NaN3 or furfuryl alcohol led to an overestimation of the contribution of 1O2 to the transformation of Van, Coni, or Sina. 3CDOM* scavengers could not fully inhibit the transformation of Coni or Sina. The remaining transformation is considered to arise from either the unquenched intra-CDOM phase 3CDOM* or a fraction of Coni⊂CDOM or Sina⊂CDOM complex, which underwent intramolecular photoinduced chemical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.