Abstract

Photodegradation of pollutants is classically explained by reaction with reactive oxygen species. However Mn(III) may also remove pollutants, but direct evidence is actually lacking. Here we investigated the role of soluble Mn(III) on phototransformation of four typical estrogens, namely estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2), in the presence of Mn(II) and humic acid. Conversion rates of 60.2%, 89.0%, 87.6%, and 80.2% were achieved for E1, E2, E3, and EE2, respectively, after 72 h visible light irradiation. A detailed quenching experiments revealed that soluble Mn(III), and not reactive oxygen species, was the oxidant responsible for estrogen removal. The determination of Mn(III) concentration provided direct proof of the role of Mn(III)-based oxidizers in the conversion of estrogens. Soluble Mn(III) can form complexes with humic acid, and about 6.51 μM of Mn(III)-humic acid was formed from 20 μM of Mn(II) in the presence of 5 mg/L of humic acid. Furthermore, product identification and theoretical computation demonstrated that estrogens are mainly converted into oligomers (dimers, trimers, tetramers, etc.) via a single-electron process. According to these results, the oxidation of Mn(II) to Mn(III) is initiated by superoxide ion (O2•-) generated from dissolved oxygen in the presence of humic acid under visible light irradiation. The formed soluble Mn(III) strips the estrogens of a single electron to generate phenoxyl radicals, which undergo oligomerization, while leads to regeneration of Mn(II). Hence, the photochemical Mn(II)-Mn(III) redox cycling may significantly influence the fate and transformation of estrogens in waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call